A Spatio-temporal Extension of the SUSAN-Filter
نویسندگان
چکیده
This paper proposes a detector for spatio-temporal interest points. Interest point detection is a common technique in computer vision to extract salient regions and represent them by a single point for further processing. But while many algorithms exist for static images, there is hardly any method to obtain interest points from image sequences for the representation of salient motion. Here we introduce SUSANinTime, an extension of the well known SUSAN algorithm from 2D to 2D+1D, where the third dimension is time. While SUSAN-2D extracts edgeand corner points, SUSANinTime detects basic events such as turning points of object trajectories. To find out the type and saliency of the detected events, we analyze the second order statistics of the spatio-temporal volume surrounding the interest points in real world image sequences.
منابع مشابه
معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملEvaluation of Tests for Separability and Symmetry of Spatio-temporal Covariance Function
In recent years, some investigations have been carried out to examine the assumptions like stationarity, symmetry and separability of spatio-temporal covariance function which would considerably simplify fitting a valid covariance model to the data by parametric and nonparametric methods. In this article, assuming a Gaussian random field, we consider the likelihood ratio separability test, a va...
متن کاملSpatio-Temporal Parameters' Changes in Gait of Male Elderly Subjects
Objectives: The purpose of this study was to compare spatio-temporal gait parameters between elderly and young male subjects. Methods & Materials: 57 able-bodied elderly (72±5.5 years) and 57 healthy young (25±8.5 years) subjects participated in this study. A four segment model consist of trunk, hip, shank, and foot with 10 reflective markers were used to define lower limbs. Kinematic data c...
متن کاملAssessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملSTCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کامل